سام الکترونیک

آموزش الکترونیک و انجام پروژه های جالب

سام الکترونیک

آموزش الکترونیک و انجام پروژه های جالب

سام الکترونیک

آموزش الترونیک
آموزش کارباقطعات الکترونیکی
آموزش کار با نرم افزارهای الکترونیکی
آموزش برنامه نویسی
آموزش بستن مدارات الکترونیکی
شناخت قطعات الکترونیکی
کاربا ICهای برنامه نویسی
کاربرد های الکترونیکی
کاربرد های الکترونیک درصنعت
دانستنی های الکترونیکی
و...
در وبگا سام الکترونیک

بایگانی
پیوندهای روزانه
۲۲
دی
  • سیدعلی مومنی
۲۲
مرداد
  • سیدعلی مومنی
۱۷
مرداد

سنسور

 

سنسور اثر هال

این سنسور نوعی سنسور مغناطیسی است که اطلاعات مغناطیسی یا کد شده بصورت مغناطیسی را به سیگنالهای الکتریکی برای پردازش در مدارهای الکترونیکی تبدیل می کند.

هنگامیکه چگالی شار مغناطیسی اطراف سنسور از یک آستانه مشخص عبور کند، سنسور این موضوع را تشخیص داده و یک ولتاژ خروجی تولید میکند.

کاربرد ها
این سنسور کاربردهای مختلفی از جمله تشخیص مکان و تشخیص سرعت دارد. یکی از کاربردهای

اساسی این سنسور، انداره گیری مکان، فاصله و سرعت در سیستمهای مربوط به وسایل نقلیه

است. مثلا شمع خودرو برای جرقه زنی، نیاز به اطلاعات مکان زاویه ای میل لنگ موتور دارد که با

سنسور هال این اطلاعات را می گیرد. همچنین محل صندلی و کیسه هوای خودرو با سنسور اثر هال

کنترل میشود. تشخیص سرعت چرخش تایر های ماشین برای فعال شدن سیستم. ABS نیز با این

سنسور انجام می گیرد

  • سیدعلی مومنی
۱۶
مرداد

موبایل هوشمند اندروید

 

 

اولین موبایل اندرویدی جهان با پشتیبانی شارژ بی‌سیم مغناطیسیangel

مشخصات فنی #ریلمی GT فلش

نمایشگر 6.7 اینچی E4 امولد رزولوشن +QHD و 120 هرتز
 پردازنده اسنپدراگون 888
حافظه رم LPDDR5
حافظه داخلی UFS 3.1
دوربین 50/50/2
سلفی 32
باتری 4500 میلی آمپر
پشتیبانی از شارژ مغناطیسی 15 و 50 وات
شارژ سریع سیمی 65 وات

  • سیدعلی مومنی
۱۱
مرداد

خازن

  • سیدعلی مومنی
۰۸
مرداد

حفاظت تجهیزات و دستگاه های سیستم قدرت در مقابل عیوب و اتصالیها ، به وسیله کلید قدرت انجام می گیرد قبل از اینکه کلید قدرت بتواند باز شود ، سیم پیچی عمل کنندة آن باید تغذیه شود این تغذیه به وسیله رله های حفاظتی انجام می پذیرد . رله به دستگاهی گفته می شود که در اثر تغییر کمیت الکتریکی مانند ولت و جریان و یا کمیت فیزیکی مثل درجه حرارت و حرکت روغن ( در رله بوخهولس ) تحریک شده و باعث به کار افتادن دستگاههای دیگر و نهایتاً قطع مدار به وسیله کلید قدرت ( در سیستم تولید و انتقال و توزیع ) یا دژنکتور می گردد .



بنابراین به وسیله رله : · محل وقوع عیب از شبکه جدا سازی شده باعث می شود که سایر قسمتهای سالم شبکه همچنان به کار خود
ادامه دهند و پایداری و ثبات شبکه به همان حالت قبلی محفوظ بماند .· تجهیزات و دستگاهها در مقابل عیوب و اتصالی ها محافظت شده و میزان خسارات وارده به آنها محدود گردد . سبب به وجود آمدن اتصالی ها و تأثیرات آنبه دو علت زیر اتصالی ها می توانند به وجود آیند : الف – تأثیرات داخلی تأثیرات داخلی که باعث خراب شدن و از بین رفتن دستگاهها یا خطوط انتقال و توزیع می شود عبارتند از :فاسد شدن قسمتهای عایق در یک مولد ، ترانسفورماتور ، خط ، کابل و غیره . این ضایعات و امکانات مکن است مربوط به عمر عایق ، عدم تنظیم صحیح ، عدم ساخت صحیح و یا عدم نصب صحیح عایق باشد . ب – تأثیرات خارجیتأثیرات خارجی شامل تأثیرات زیادی است از آن جمله رعد و برق ، اضافه بار که باعث به وجود آمدن حرارت شود ، برف و باران ، باد و طوفان ، شاخة درختها ، حیوانات و پرندگان ، سقوط اشیاء اشتباه در عملیات و خسارتهایی که یه وسیله مردم وارد می شود و غیره . وقتی که یک اتصالی در مداری رخ دهد ، جریان افزایش یافته و ولتاژ ( اختلاف پتانسیل ) نقصان پیدا می کند افزایش جریان حرارت زیادی را به وجود آورده که ممکن است منجر به آتش سوزی یا انفجار شود . اگر اتصالی به صورت جرقه باشد ممکن است خسارت زیادی به بار آورد . برای مثال اگر جرقه ای بر روی خط انتقال نیرو به وجود آمده و سریعاً بر طرف نشود خط را سوزانده و باعث پاره شدن آن خواهد شد و نتیجه سبب قطع برق برای مدت طولانی خواهد شد . نقصان ولتاژ که در اثر یک اتصالی به وجود آید می آید برای دستگاههای الکتریکی بسیار زیان آور است و اگر این ولتاژ ضعیف برای چند ثانیه ایی ادامه داشته باشد ، موتورهای مشترکین از کار باز ایستاده ، دوران مولدهای برق نامنظم و نا مرتب خواهد شد پس در صورت وقوع جریان شدید و ولتاژ ضعیف به سبب اتصالی در مدار می بایست به فوریت اتصالی کشف و برطرف گردد و جریان ولتاژ به حالت عادی باز گردانده شود.رله های جریانی : رله های جریانی به منظور حفاظت شبکه های الکتریکی در مقابل عیوب ناشی از خطاهای جریان بکار میروند . عمده عیوبی که توسط رله های جریانی تشخیص داده می شوند عبارت است از : þاتصال کوتاه در شبکهþاضافه جریان þاضافه بارþجریان نشتی (ارت فالت) þعدم تقارن جریان سه فازþکاهش بار ( در مورد موتورها)þافزایش مدت زمان راه اندازی (در مورد موتورها)þقفل بودن روتور (در مورد موتورها) حفاظت اتصال کوتاه و اضافه جریان و اتصالی زمین : اولین و یکی از مهمترین حفاظت هایی که در یک سیستم وجود دارد حفاظت اتصال کوتاه و اضافه جریان و نشتی زمین می باشد . این حفاظت ها با حفاظت اضافه بار تفاوت آشکاری دارد چون حفاظت اضافه بار بر اساس ظرفیت حرارتی واحد می باشند . در این نوع حفاظت جریان سه فاز توسط سه عدد ترانسفورمر جریان حس می گردند و به رله انتقال می یابند و بر اساس آن حفاظت صورت می گیرد . در مورد حفاظت فوق منحنی قطع رله از اهمیت بسیار زیادی برخوردار است زیرا حفاظت صحیح بر اساس آن صورت میگیرد .این رله ها می توانند دارای دو گروه منحنی قطع باشند :þ نوع زمان ثابت که پارامتر جریان و زمان به هم وابستگی ندارند و به صورت جداگانه تنظیم می گردند و رله بر اساس جریان تنظیمی در زمان تنظیم شده فرمان قطع را صادر می کنند .þ نوع زمان کاهشی که در این حالت زمان قطع رله با یک منحنی به جریان عبوری از رله مرتبط می باشد . به این صورت که هر چه جریان عبوری از رله بیشتر گردد زمان قطع رله کمتر خواهد بود .بسته به عملکرد و نوع استفاده از رله منحنی های استانداردی برای این رله ها تعریف می گردد که بشرح زیر است : Standard Inverse Curve (SIT)Very Inverse Curve (VIT)Extremely Inverse Curve (EIT)Ultra Inverse Curve (UIT) حفاظت سیستم های الکتریکی از اهمیت بسیار زیادی برخوردار است و امروزه کمپانی های متعددی در حال طراحی و ساخت رله های حفاظتی می باشند . برخی از کمپانی های معتبر که در این زمینه مشغول به فعالیت می باشند را معرفی می کنیم.Siemens , Alstom , ABB , GE Power , Schneider , CEE , Reyroll به طور کلی رله های حفاظتی باید دارای مشخصات زیر باشند : þسرعت عملکرد : این پارامتر در رله های حفاظتی بسیار حائز اهمیت است چون رله های حفاظتی هنگام خطا موظفند با سرعت هرچه تمامتر بخش های معیوب را از قسمت های سالم جدا نمایند . þحساسیت : این پارامتر به حداقل جریانی که سبب قطع رله می گردد بر میگردد .þتشخیص و انتخاب در شرایط خطا : این پارامتر نیز بسیار مهم است زیرا در شبکه هایی که دارای چند باس بار و رله حفاظتی هستند هنگام وقوع خطا می باید قسمت معیوب به درستی تشخیص داده شده و از شبکه جدا گردد و قسمتهای سالم به کار خود ادامه دهد.þپایداری : این پارامتر به این باز میگردد که یک رله حفاظتی به تمامی خطاهایی که در محدوده حفاظتی خود به درستی عکس العمل نشان دهد و در مقابل خطاهای این محدوده عکس العملی نشان ندهد . دسته بندی رله های حفاظتی بر اساس پارامترهای اندازه گیری : الف) رله های جریانی : این رله ها بر اساس میزان جریان ورودی به رله عمل می کند . حال این جریان می تواند جریان فازها , جریان سیم نول , مجموع جبری جریانهای فازها باشد (رله های جریان زیاد – رله های ارت فالت و .... ) و جریان ورودی رله می تواند تفاضل دو یا چند جریان باشد ( رله های دیفرانسیل و رستریکت ارت فالت ) ب) رله های ولتاژی : این رله ها بر اساس ولتاژ ورودی به رله عمل میکند این ولتاژ می تواند ولتاژ فازها باشد (رله های اضافه یا کمبود ولتاژ و ....) و یا میتواند مجموع جبری چند ولتاژ باشد ( رله تغییر مکان نقطه تلاقی بردارهای سه فاز) ج) رله های فرکانسی : این رله ها بر اساس فرکانس ولتاژ ورودی عمل میکند ( رله های افزایش و کمبود فرکانس) د) رله های توانی : این رله ها بر اساس توان عمل می کنند به عنوان مثال رله هایی که جهت توان را اندازه گیری می کنند یا رله هایی که توان اکتیو و راکتیو را اندازه گیری می کنند . ه) رله های جهتی : این رله ها از جنس رله های توانی هستند که بر اساس زاویه بین بردارهای ولتاژ و جریان عمل میکنند مانند رله های اضافه جریان جهتی که در خطوط چند سو تغذیه رینگ و پارالل بکار می روند و یا رله های جهت توان که جهت پرهیز از موتوری شدن ژنراتور هنگام قطع کوپلینگ آن بکار میرود . و) رله های امپدانسی : مانند رله های دیستانس که در خطوط انتقال کاربرد فراوانی دارند . ز) رله های وابسته به کمیت های فیزیکی : مانند حرارت – فشار – سطح مایعات و .... مانند رله بوخ هلتس ترانسفورمرها

ح) رله های خاص : رله هایی هستند که برای منظورهای خاص به کار میروند مثلا رله تشخیص خطای بریکر – رله مونیتورینگ مدار تریپ بریکر – رله لاک اوت و .....
 

ساختار عملکرد رله
رله‌ها از نظر تکنولوژی ساخت به سه نوع الکترومکانیکی، استاتیک و دیجیتال[1] تقسیم می‌گردند. نوع الکترومکانیکی رله‌ها در حال جایگزین‌شدن با انواع دیجیتال بوده و استفاده از آنها بسیار محدود شده است. در نوع استاتیکی طراحی بر مبنای ادوات الکترونیکی آنالوگ بوده و لذا فاقد امکان برنامه‌ریزی می‌باشند. در نوع دیجیتال از پردازنده جهت آنالیز جریان خطا و اعمال فرمان مناسب استفاده می‌شود و با توجه به این امر امکان برنامه‌ریزی رله و داشتن چندین مشخصه عملکردی متفاوت امکانپذیر خواهدبود. در این نوع رله‌ها چندین عملکرد مختلف که پیش از آن به کمک رله‌های مجزا انجام می‌گرفت را می‌توان بصورت مجتمع در یک رله قرارداد که البته این امر می‌تواند باعث کاهش قابلیت اطمینان سیستم حفاظتی گردد. با این حال استفاده از رله‌های دیجیتال در حال حاضر گزینه اصلی حفاظتی بوده و پیشنهادات بر این مبنا ارائه می‌شوند.

انواع رله‌ها
جهت تشخیص انواع مختلف خطا و با توجه به مشخصه‌های موردنیاز، انواع مختلفی از رله در سیستم حفاظتی مورد استفاده قرار می‌گیرد که در ادامه به اجمال معرفی می‌شوند.

رله اضافه جریان
متداولترین نوع رله که در شبکه استفاده می‌گردد، رله جریان زیاد است. رله‌های جریان زیاد تأخیری دارای چند مشخصه زمان _ جریان بوده و زمان قطع آنها وابسته به مقدار جریان خطا می‌باشد. مطابق استاندارد IEC‌ سری 60255 این نوع رله‌ها بایستی دارای چها مشخصه مختلف باشند که زمانهای قطع متفاوتی را ارائه می‌کنند. این رله‌ها می‌توانند از نوع جهت‌دار باشند که در این صورت رله تنها به خطاهای در یک جهت پاسخ می‌دهد. رله جریان زیاد تأخیری می‌تواند به واحد آنی نیز مجهز گردد که در این صورت در جریانهای بسیار زیاد، زمان عملکرد رله ثابت و مقدار کوچکی خواهد بود. رله‌های اضافه جریان آنی می‌توانند بصورت واحد مجزا نیز مورد استفاده قرار گیرند. شکل شماره (1-1) مشخصه‌های زمان – جریان رله اضافه جریان را مطابق با استاندارد IEC نشان می‌دهد. رله‌های اضافه جریان دارای دو تنظیم زمانی و جریانی می‌باشند. به کمک تنظیم جریان می‌توان حد جریان شروع عملکرد[3] رله را تنظیم کرد و به کمک تنظیم زمانی هماهنگی بین رله‌های مختلف امکانپذیر می‌گردد.
رله دیستانس
رله دیستانس نامی عمومی برای رله‌های امپدانسی است که از ورودیهای ولتاژ و جریان استفاده کرده و یک سیگنال خروجی را تهیه می‌نمایند. فرمان قطع زمانی صادر می‌شود که فاصله نقطه خطا از محل نصب رله کوچکتر از یک مقدار مشخص باشد.
این نوع رله بطور گسترده‌ای برای حفاظت خطوط مورد استفاده قرار می‌گیرد. رله دیستانس همچنین برای حفاظت اتصال حلقه به حلقه سیم‌پیچی‌های ترانسفورماتورهای قدرت نیز می‌تواند مورد استفاده قرار گیرد.
مشخصه عملکردی رله دیستانس معمولاً بصورت گرافیکی و بر حسب دو متغیر R و X نشان داده می‌شود. دیاگرام مشخصه رله نشان‌دهنده امپدانسهایی است که در جهت قطع رله واقع می‌شوند و هچنین شامل امپدانسهایی است که رله به ازای آنها عمل نمی‌کند. رله‌های دیستانس بر حسب مشخصه عملکردی خود به انواع مختلفی تقسیم می‌شوند که در ادامه مورد بررسی قرار می‌گیرد.

الف ـ رله دیستانس نوع راکتانسی
این نوع رله جزء موهومی امپدانس یعنی راکتانس (X)‌ را اندازه‌ می‌گیرد و مشخصه آن در صفحه R-X‌ بصورت یک خط موازی با محور R است. رله راکتانسی هنگامی عمل می‌کند که مقدار راکتانس خط از محل رله تا نقطه خطا، کوچکتر از مقدار تنظیم شده باشد. این نوع رله نسبت به مقاومت خطا و بالطبع مقاومت جرقه حساس نمی‌باشد اما لازمست به امکاناتی برای جهت‌دار شدن و عملکرد مناسب در مقابل امپدانس بار مجهز گردد. این نوع رله جهت حفاظت خطوط کوتاه که مقاومت جرقه در مقایسه با امپدانس خط قابل توجه است مناسب می‌باشد.

ب ـ رله دیستانس نوع امپدانس
رله امپدانسی به اندازه امپدانس ) ( پاسخ می‌دهد و به این ترتیب مشخصه این رله بصورت یک دایره به مرکز مبدا مختصات صفحه R-X می‌باشد. برای اینکه رله جهتدار شود لازم است که دارای امکانات اضافی دیگری باشد تا جهت منفی (ربعهای دوم، سوم و چهارم) را جدا کند.

ج ـ رله دیستانس نوع مهو
مشخصه رله مهو به صورت دایره‌ای است که قطر آن برابر امپدانس تنظیم شده است. رله مهو هنگامی عمل می‌کند که امپدانس دیده شده از محل رله تا نقطه خطا درون مشخصه قرار گیرد. از آنجا که قسمت اعظم مشخصه دایره‌ای شکل در ربع اول واقع می‌شود این رله جهت‌دار خواهد بود.
ناحیه عدم عملکرد

ناحیه عملکرد


این مشخصه بخاطر سادگی و جهت‌دار بودن بسیار مورد استفاده قرار گرفته و در قیاس با رله امپدانسی دارای حساسیت کمتری در مقابل نوسانات قدرت در شبکه می‌باشد. این مشخصه همچنین دارای فاصله کافی با امپدانس بار می‌باشد. با این حال به دلیل آنکه این مشخصه دارای پوشش کمی در جهت محور حقیقی (R) است، در خطوط کوتاه ممکن است دچار مشکل در تشخیص ناحیه حفاظتی گردد (تأثیر مقاومت جرقه می‌تواند به حدی ‌باشد که رله خطای موجود در یک ناحیه را در ناحیه بعدی ببیند).
در بعضی موارد زون سوم رله مهو کمی به سمت ربع سوم صفحه مختصات تغییر مکان داده می‌شود که این مشخصه به افست مهو[4] مشهور است. این موضوع باعث می‌شود که برای خطاهای حوالی شینه پشت خط حفاظت پشتیبان فراهم شود. نوع دیگری از انواع رله‌های مهو که به آن Cross Polarized می‌گویند دارای مشخصه مهو برای خطاهای سه فاز بوده و برای سایر خطاها، مشخصه در امتداد محور مقاومت باز می‌شود تا بتواند خطاهای جرقه‌ را پوشش دهد.

دـ رله دیستانس با مشخصه چهارضلعی
تنظیم رله بر روی محور X و R بطور مستقل امکانپذیر بوده و این امر باعث بهبود مشخصه مقاومتی رله در مقایسه با رله مهو می‌گردد و امکان درنظرگرفتن مقاومت جرقه را به طور موثری فراهم می‌آورد.
هـ ـ سایر مشخصه‌ها
بجز موارد ذکر شده، رله‌ها می‌توانند دارای مشخصه بیضوی، ترکیبی و حالات خاص باشند. در مشخصه ترکیبی معمولاً از نوع راکتانس نظارت شده توسط مشخصه مهو استفاده می‌شود. رله بیضوی دارای مشخصه بیضوی در راستای زاویه خط بوده و به این ترتیب در مقابل امپدانس بار از پایداری مناسبی برخوردار است.
جهت پایداری بهتر رله دیستانس در مقابل امپدانس بار، می‌توان مشخصه چهارگوش رله‌ها را به نحوی اصلاح کرد که نسبت به امپدانس بار پایداری بیشتری نشان دهد. برای این کار مشخصه چهارگوش با توجه به حدود زاویه امپدانس بار بریده می‌شود.
رله دیفرانسیل
رله دیفرانسیل بر پایه جمع جبری جریانهای ورودی و خروجی در منطقه حفاظت شده عمل می‌نماید. در حالت عادی، جریانی که به یک نقطه وارد می‌شود برابر با جریانی است که از آن خارج می‌گردد، بنابراین تفاضل آنها صفر بوده و جریانی از رله نمی‌گذرد. اگر در نقطه حفاظت شده اتصالی رخ دهد، قسمتی از جریان به سمت نقطه اتصالی ریخته و جریان خروجی کمتر از جریان ورودی است، بنابراین جریانی از رله عبور می‌کند. اگر این جریان تفاضلی، بیشتر از مقدار تنظیم شده باشد، رله‌ فرمان قطع را صادر می‌کند. این نوع حفاظت در اکثر قسمتهای سیستم مورد استفاده قرار می‌گیرد. قابل ذکر است که این نوع حفاظت، اضافه بار و یا اتصالیهای خارج از منطقه حفاظت‌شده را نمی‌بیند و همچنین این رله اتصالیهای بین دورهای سیم پیچی در موتورها، ژنراتورها و ترانسفورماتور را تشخیص نمی‌دهد.
رله دیفرانسیل، حفاظتی با سرعت بالا و حساس را ارائه می‌نماید و به انواع زیر تقسیم می‌گردد:
- رله دیفرانسیل جریان زیاد
- رله دیفرانسیل درصدی
- رله دیفرانسیل امپدانس زیاد
- رله دیفرانسیل پایلوت
در رله‌های دیفرانسیل، انتخاب ترانسفورماتورهای جریان بسیار مهم بوده و برای عملکرد صحیح و مناسب حفاظت حیاتی می‌باشد.

الف ـ رله دیفرانسیل جریان زیاد
رله دیفرانسیل جریان زیاد در یک تفاضل جریان ثابت عمل کرده و براحتی توسط خطاهای ترانسفورماتورهای جریان تأثیر می‌پذیرد. این نوع رله، در مقایسه با بقیه رله‌های دیفرانسیل دارای حساسیت کمتری است بخصوص زمانی که برای اتصالیهای زمین با مقادیر کم مورد استفاده قرار گیرد. در شرایط عادی، جریانی که از ترانسفورماتورهای جریان دو طرف می‌گذرد برابر است و بنابراین باید جریان ثانویه ترانسفورماتورها نیز یکسان باشند تا جریانی از رله عبور نکند.
معمولاً ترانسفورماتورهای جریان دقیقاً نسبت تبدیل نامی را ارائه نمی‌نمایند. بنابراین اگر از رله دیفرانسیل جریان زیاد استفاده می‌گردد، این رله باید بطریقی تنظیم گردد که ماکزیمم جریان خطای ترانسفورماتورها را تحمل نموده و فرمان قطع صادر نگردد. بهمین خاطر برای بدست آوردن حساسیت موردنظر معمولاً از رله دیفرانسیلی درصدی بهره گرفته می‌شود.


ب ـ رله دیفرانسیل درصدی
رله‌های دیفرانسیل درصدی در شینه‌ها، ترانسفورماتورها، موتورها و ژنراتورها مورد استفاده قرار می‌گیرد. این رله‌ها به سه نوع تقسیم می‌شوند. رله با درصد ثابت، رله با درصد متغیر که برای تمام موارد فوق بکار می‌روندو رله دارای هارمونیک که تنها برای ترانسفورماتور بکار می‌رود.
رله‌های درصد متغیر برای تشخیص اتصالیهای سطح پایین در منطقه حفاظتی نسبت به رله‌های با درصد ثابت حساستر است. رله دیفرانسیل درصدی که برای ترانسفورماتور استفاده می‌شود، دارای حساسیت کمتری نسبت به رله‌هایی است که برای شینه، ژنراتور و موتور بکار می‌رود.
جهت بدست آوردن حساسیت مناسب در محدوده جریان خطا، رله‌های دیجیتالی دارای مشخصه بایاس متغیر می‌باشند. در این رله‌ها هرچه جریان دیفرانسیل ناشی از جریان خطا افزایش یابد، جریان بایاس نیز افزایش می‌یابد و رله در تمامی جریانها دارای حساسیت مناسب خواهد بود.

ج ـ رله دیفرانسیل امپدانس زیاد
رله دیفرانسیل امپدانس زیاد برای حفاظت شینه و سیم‌پیچی ترانسفورماتور و به صورت رله دیفرانسیل جریانی و یا رله دیفرانسیل ولتاژی بکار می‌رود. برای اتصالیهای خارج از منطقه حفاظتی خطای زیادی در ترانسفورماتور جریان مربوطه رخ می‌دهد و ولتاژی بالاتر از حد عادی بر روی رله بوجود می‌آید و از این رو ولتاژ زیادی بر روی ترانسفروماتور جریان قرار می‌گیرد و جریان تحریک ترانسفورماتورهای جریان را افزایش می‌دهد. بنابراین جریانهای خطا ترجیح می‌دهند بجای عبور از امپدانس بالای رله، از امپدانس مغناطیسی معادل ترانسفورماتورهای جریان عبور کنند و برای جلوگیری از این عمل از مقاومت متغیر موازی با رله استفاده می‌شود تا این ولتاژ در یک حد قابل قبول باقی بماند.

دـ رله دیفرانسیل پایلوت
این نوع رله دارای سرعت بالایی بوده و برای حفاظت اتصالیهای فاز و زمین در خطوط کوتاه، مورد استفاده قرار می‌گیرد. در این سیستم حفاظتی، پایلوت در حقیقت کانالی است که دو انتهای خط انتقال را به هم ارتباط می‌دهد. این کانال معمولاً به سه شکل وجود دارد. اولین نوع آن همان پایلوت وایر و یا کانال سیمی (کابل) است و ارتباط جریانی از طریق کابل تامین می‌گردد.
نوع دوم پایلوت جریان کاریر (PLC) است. در این سیستم جریان فرکانس زیاد که فرکانس آن بین 3 تا 200 کیلو هرتز می‌باشد، از طریق یکی از سیمهای خط انتقال به گیرنده‌ای واقع در سر دیگر خط منتقل می‌شود. در این سیستم معمولاً زمین و سیم زمین بجای سیم برگشت عمل می‌کنند.
پایلوت میکروویو، سیستم رادیویی با فرکانس بالای 900 مگاهرتز است. جهت فواصل کوتاه از حفاظت پایلوت وایر استفاده می‌شود و برای فواصل بیشتر پایلوت کاریر مورد استعمال دارد. موارد کاربرد پایلوت میکروویو زمانی است که از لحاظ فنی و اقتصادی پایلوت کاریر جوابگو نباشد.
این نوع رله‌گذاری شامل دو رله در دو انتهای خط است که توسط سیم پایلوت، جریان کاریر و یا میکروویو بهم متصل می‌شوند. خروجی سه ترانسفورماتور جریان به شبکه توالی اعمال می‌شود. این شبکه جریانی ترکیبی که متناسب با جریان خط است تولید می‌کند و پلاریته آن متناسب با جهت جریان است. هر رله شامل یک عضو محدودکننده و یک عضو عمل‌کننده می‌باشد. عضو محدودکننده با مسیر جریانی پایلوت سری بوده و عضو عمل‌کننده هر رله، موازی با مسیر جریانی پایلوت واقع می‌شود.
در حالت کار عادی و در حالتی که اتصالی در خارج از منطقه حفاظتی رخ دهد جهت جریانها بگونه‌ای است که جریانی از اعضای عمل‌کننده عبور نمی‌کند.
اما زمانی که اتصالی در منطقه حفاظتی رخ دهد، جریان یک طرف در همان جهت باقی‌مانده ولی جریان طرف دیگر در جهت خلاف جاری می‌شود و نتیجتاً جریان را به سیم‌پیچهای اعضای عمل‌کننده تزریق می‌نماید. اگر جریان اتصالی تنها از یک کلید عبور کند رله واقع در محل آن کلید، جریان را از طریق مسیر پایلوت ارسال می‌کند و کلید در طرف مقابل نیز عمل می‌کند.

رله ولتاژی
رله‌‌های ولتاژی به دو نوع ولتاژ کم و ولتاژ زیاد تقسیم می‌شوند که در حالت‌های نقصان و ازدیاد ولتاژ در شبکه عمل می‌نمایند. علاوه بر این، حالت عدم تقارن ولتاژ در سه فاز سیستم را حس نموده و فرمانهای کنترلی لازم را صادر می‌کنند. در بعضی از موارد، از رله ولتاژ زیاد در ترکیب حفاظت تفاضل ولتاژ بهره گرفته می‌شود، بنابراین چنانچه اختلاف دو ولتاژ از یک حد مشخص فراتر رود، رله عمل می‌کند.

الف ـ رله ولتاژ کم
رله ولتاژ کم رله‌ای است که با کاهش ولتاژ مجموعه‌ای از کنتاکتها را متصل می‌کند و به دو نوع زیر تقسیم می‌گردد:
- رله با تأخیر زمانی: تنظیم ولتاژ با تپ‌های گسسته قابل انجام است و زمان تأخیر در ارسال فرمان قطع نیز قابل تنظیم می‌باشد.
- رله آنی: در این حالت نیز تنظیم تپ‌های ولتاژ وجود دارد و زمان در یک محدوده کوچک قابل تغییر می‌باشد.

ب ـ رله ولتاژ زیاد
رله ولتاژ زیاد در مقابل افزایش ولتاژ عمل نموده و فرمانهای کنترلی را صادر می‌نماید. این نوع رله در موارد زیر بکار می‌رود:
- حفاظت سیستم در مقابل اضافه ولتاژ: این رله می‌تواند در مقابل افزایش ولتاژ، سیگنال خبردهنده ارسال کند و یا در صورت لزوم بارها و مدارهای حساس به ولتاژ را قطع نماید و از صدمه دیدن آنها جلوگیری نماید.
- عدم تقارن ولتاژ فازها: رله ولتاژی، عدم تقارن ولتاژ در فازها را در حالت اتصال کوتاه و اشکال در فیوز ثانویه ترانس ولتاژ حس می‌کند که این کار با اندازه‌گیری توالی صفر و منفی ولتاژها انجام می‌گیرد.
رله عدم تقارن ولتاژ برای ایزوله‌کردن رله‌ها یا وسایلی که با قطع ولتاژ در یک یا هر سه فاز ثانویه ترانس ولتاژ یا وجود اشکال در فیوز ثانویه ترانس ولتاژ نادرست عمل می‌کنند، بکار می‌رود. بعنوان مثال رله دیستانس یا رله سنکرونیزم، در این صورت فرمان نادرست صادر می‌کنند. بنابراین زمان قطع رله بالانس ولتاژ باید بحدی کوچک باشد تا قبل از اینکه رله‌های نامبرده باعث قطع کلید شوند، آنها را از مدار خارج کند.
رله‌های ولتاژ زیاد نیز دارای دو نوع تأخیری و آنی هستند. در رله‌های ولتاژ زیاد آنی تنها تنظیم ولتاژ آستانه مطرح است و پس از افزایش ولتاژ از حد مربوطه، رله بلافاصله عمل خواهد کرد.
رله اضافه شار یا اضافه تحریک
از آنجا که شار هسته ترانسفورماتور وابسته به نسبت ولتاژ به فرکانس است، رله اضافه شار نیز بر مبنای اندازه‌گیری نسبت ولتاژ به فرکانس (V/HZ) عمل می‌نماید. این رله دارای مشخصه عملکرد زمان معکوس می‌باشد، به این معنی که برای تغییرات زیاد (V/HZ)، در زمان کوتاهتری عمل می‌کند و تغییرات کوچک ولتاژ به فرکانس دارای تأخیری بیشتری خواهد بود. از آنجا که فرکانس در شبکه تقریباً ثابت است لذا افزایش ولتاژ در شبکه به معنی افزایش شار خواهد بود. به همین دلیل در بسیاری از موارد بجز در ترانسفورماتورهای نیروگاهی از این نوع رله استفاده نمی‌شود.
رله فرکانسی
این رله‌ها برای اندازه‌گیری و نظارت بر روی فرکانس شبکه مورد استفاده قرار می‌گیرند. این رله‌ها به کاهش یا افزایش فرکانس و یا نرخ تغییرات فرکانس حساس می‌باشند.
کاربرد رله‌های فرکانس پائین زمانی است که در یک شبکه بارها بطور مستقل توسط ژنراتورهای داخلی و یا با ترکیب ژنراتورها و خطوط ارتباطی با شبکه‌های دیگر تغذیه گردند. زمانی که یک ژنراتور بطور ناگهانی از شبکه خارج می‌شود رله‌های فرکانس پایین بطور اتوماتیک تعدادی از بارها را خارج نموده تا مصرف با باقیمانده تولید هماهنگ شود.
رله سنکرونیزم
این رله زمانی بکار می‌رود که دو یا چند فیدر به یک باس مشترک متصل می‌گردند. اتصال موفقیت‌آمیز دو منبع به یکدیگر بستگی به اختلاف دامنه‌های ولتاژ طرفین، زاویه‌های فاز و فرکانسهای دو منبع در زمان اتصال دارد. رله کنترل سنکرونیزم در صورت نزدیک بودن مقادیر دو طرف، اجازه اتصال را خواهد داد.
رله سنکرون‌کننده، رله‌ای است که در رابطه با اتصال ژنراتور به شبکه و یا اتصال دو شبکه مجزا مورد استفاده قرار می‌گیرد. این رله سنکرون‌کننده برای کنترل یک یا چند کلید در یک نیروگاه و ارتباط با سیستم کنترل نیز بکار می‌رود. بر خلاف رله کنترل سنکرونیزم، رله سنکرون‌کننده می‌تواند فرمان وصل کلید را در نقطه دقیق سنکرونیزم صادر نماید.
سنکرون‌کردن دستی نیازمند آموزش، استفاده از قدرت تشخیص، تجربه و دقت کافی از طرف اپراتور است. کلیدها و ژنراتورها در صورت عدم دقت اپراتور دچار صدمه می‌شوند. بنابراین فرمان وصل کلید، تنها وقتی که رله سنکرونیزم اجازه دهد، صادر می‌گردد.
رله کنترل سنکرونیزم برای نظارت بر اتصال دستی کلید بکار می‌رود. بنابراین اپراتور مقادیر سنکرونیزم را کنترل کرده و بطور دستی فرمان وصل می‌دهد ولی کنتاکت باز رله سنکرونیزم که بصورت سری قرار گرفته است از اتصال جلوگیری می‌کند. کنتاکت باز رله سنکرونیزم وقتی بسته می‌شود که اختلاف زاویه فاز در دو طرف کلید از مقدار مشخص کمتر بوده و همچنین اختلاف ولتاژ بین دو طرف مقدار کمی را دارا باشد.
رله سنکرونیزم به دو طریق مورد استفاده قرار می‌گیرد. می‌توان این رله را بعنوان ناظر در اتصال دستی ژنراتور به شبکه مورد استفاده قرار داد. طریق دیگر استفاده از رله سنکرونیزم در اتصال اتوماتیک ژنراتور به شبکه است که در این حالت علاوه بر اینکه شرایط سنکرونیزم مورد ارزیابی قرار می‌گیرد، فرمانهایی از طرف رله سنکرونیزم به سیستمهای تنظیم فرکانس و ولتاژ ژنراتور ارسال می‌گردد و اتصال کاملاً اتوماتیک صورت می گیرد.
رله زمانی
رله زمانی در مواردی بکار می‌رود که تأخیر عمدی در ارسال سیگنال یا عمل قطع و وصل موردنیاز باشد. بدین خاطر این رله به تنهایی بکار نمی‌رود و در کنار رله‌های سنجشی در حفاظت شبکه مورد استفاده قرار می‌گیرد. دقت رله‌های زمانی زیاد و قابل تنظیم می‌باشند.
نوع دیجیتالی این رله‌ها دارای قسمتی است که تابع تأخیر را تهیه نموده و فرمان قطع یا وصل کنتاکتهای کنترلی را صادر می‌نماید. این رله‌ها علاوه بر سیستم حفاظت در تجهیزات کنترل اتوماتیک و فرآیند صنعتی مورد بهره‌برداری قرار می‌گیرند.
1-3-9- سایر رله‌ها
انواع رله‌ها به موارد گفته‌شده در قبل محدود نمی‌شود و از تنوع بسیار زیادی برخوردار است. از انواع دیگر رله‌ها می‌توان به رله نظارت بر قطع مدار تریپ، رله جابجایی نقطه صفر، رله کاهش امپدانس و... اشاره کرد.

  • سیدعلی مومنی
۰۸
مرداد

یک خازن به جزئی گفته می‌شود که وظیفه آن ذخیره بار و در نتیجه انرژی الکتریکی است. خازن‌ها از نظر ظاهر و اندازه متفاوت هستند اما مکانیزم کارکرد آن‌ها یکسان است. اصول کارکرد خازن به این صورت است که دو ناحیه با بار مخالف در معرض یکدیگر قرار می‌گیرند. دو بار مخالف، میدانی الکتریکی را ایجاد می‌کنند که در خود انرژی الکتریکی را ذخیره کرده و می‌توان در صورت لزوم از آن استفاده کرد. در شکل زیر میدان ناشی از دو بار با اندازه برابر و علامت مخالف نشان داده شده است.

Capacitor

خازن‌ها کاربرد بسیاری در صنعت الکترونیک دارند. مهم‌ترین استفاده از آن‌ها به عنوان فیلتر کننده فرکانس‌ و ذخیره‌ کننده بار‌های الکتریکی در مدار‌های الکتریکی است.

زمانی که یک خازن در حالت تعادل الکتریکی قرار دارد،‌ هیچ‌یک از صفحات آن دارای بار الکتریکی نیستند. وقتی که آن را شارژ کنیم، بار الکتریکی Q میان صفحات جابجا می‌شود. این جابجایی منجر به باردار شدن یک صفحه به اندازه Q+ و صفحه دیگر به اندازه Q- خواهد شد. با توجه به اینکه با دو صحفه باردار مواجه هستیم، بنابراین می‌توان یک اختلاف پتانسیل برای آن تعریف کرد. توجه داشته باشید که در ادامه این اختلاف پتانسیل را با ΔV نشان خواهیم داد. هم‌چنین بدیهی‌ است که بار خالص موجود در یک خازن همواره برابر با صفر است و این تنها توزیع بار است که منجر به ایجاد اختلاف پتانسیل می‌شود.

در شکل زیر شماتیکی از ساده‌ترین نوع خازن نشان داده شده است. در این نوع از خازن از دو صفحه رسانای موازی استفاده شده که مساحت هرکدام از آن‌ها برابر با A است و با فاصله d از یکدیگر قرار گرفته‌اند.

Capacitor

آزمایشات نشان می‌دهند که مقدار بار Q ذخیره شده در خازن با اختلاف پتانسیل ΔV دو صفحه رابطه‌ای خطی دارد. بنابراین مقدار بار ذخیره شده در خازن را می‌توان در قالب فرمول زیر بیان کرد:

Capacitor

در رابطه بالا C را تحت عنوان «ظرفیت خازن» (Capacitance) می‌شناسند. از نظر فیزیکی، این ضریب نشان دهنده میزان توانایی خازن در ذخیره بار الکتریکی است. واحد اندازه‌گیری ظرفیت در سیستم SI فاراد است که با F نشان داده می‌شود. در حقیقت ا فاراد معادل با مقدار زیر است.

 

Capacitor

معمولا ظرفیت خازن‌ها از مرتبه پیکوفاراد تا میلی فاراد است. ۱ پیکوفاراد برابر با ۱۲-۱۰ فاراد در نظر گرفته می‌شود. در مدارات الکتریکی نیز از دو خط موازی به‌منظور نشان دادن محل خازن استفاده می‌شود. البته حالت‌های مختلفی از نشان دادن خازن در یک مدار وجود دارد. در شکل زیر دو روش مرسوم جهت نشان دادن خازن رسم شده.

Capacitor

نحوه محاسبه ظرفیت خازن

همان‌طور که در بالا نیز بیان شد، مهم‌ترین مشخصه هر خازن ظرفیت آن است. از این رو در این قسمت نحوه بدست آوردن ظرفیت خازن را با استفاده از مثال توضیح خواهیم داد.

مثال ۱: خازنی با دو صفحه موازی

مطابق با شکل زیر، دو صفحه تخت را تصور کنید که مساحت سطح هرکدام از آن‌ها برابر با A و فاصله آن‌ها برابر با d باشد. همان‌گونه که در شکل نیز مشخص شده، صفحه بالا دارای بار Q+ است و صفحه پایین بار Q- را در خود دارد.

Capacitor

می‌توان با استفاده از یک باتری، حالت توصیف شده را ایجاد کرد. در حقیقت باتری اختلاف پتانسیلی در دو سر خازن ایجاد می‌کند که منجر به جداسازی بارها از یکدیگر می‌شود. هدف ما محاسبه ظرفیت خازن مفروض است. به‌منظور یافتن ظرفیت C، در ابتدا بایستی میدان الکتریکی بین دو صفحه را تحلیل کنیم. توجه داشته باشید که یک خازن واقعی دارای اندازه‌ای محدود است. بنابراین خطوط میدان الکتریکی در لبه آن به صورت خط راست نخواهند بود. در حقیقت میدان الکتریکی را نمی‌توان در نزدیکی لبه صفحات فقط به صورت خطوط راست تصور کرد. به این پدیده «اثر لبه» (Edge Effect) گفته می‌شود. در شکل بالا نیز مشاهده می‌کنید که میدان الکتریکی در نزدیکی لبه بصورت منحنی در آمده است. این انحنا همان اثر لبه را نشان می‌دهد.

توصیفات بالا مربوط به حالت واقعی است. این در حالی است که به‌منظور استخراج فیزیک خازن، مطابق با شکل ۱، میدان را بصورت خطوطی راست در نظر می‌گیریم که کاملا بین صفحات قرار گرفته‌اند. برای ایجاد چنین شرایطی دو صفحه موازی را فرض کنید که روبروی هم قرار گرفته و طول آن‌ها بینهایت است. چگالی سطحی الکتریکی این دو صفحه را برابر با σ فرض کنید. قانون گاوس در نزدیکی این دو صفحه را می‌توان به شکل زیر بیان کرد:

Capacitor

سطح گاوسی را مطابق با شکل زیر به نحوی در نظر بگیرید که در آن سطحی به مساحت ‘A از صفحه مثبت را در بر گیرد. (برای درک بهتر به شکل زیر توجه کنید).

Capacitor
شکل ۱

با توجه به سطح گاوسی در نظر گرفته شده، میدان الکتریکیِ E میان دو صفحه برابر است با:

Capacitor

با بدست آمدن میدان الکتریکی می‌توان اختلاف پتانسیل دو صفحه را نیز یافت. اگر به یاد داشته باشید در این‌جا نیز می‌توان با استفاده از میدان الکتریکی میان دو صفحه، اختلاف پتانسیل بین آن‌ها را نیز بدست آورد. در نتیجه با توجه به مفاهیم عنوان شده داریم:

Capacitor

توجه داشته باشید که در رابطه بالا مسیر انتگرال‌گیری از صفحه مثبت به سمت منفی در نظر گرفته شده است. در تمامی این مسیر بردار دیفرانسیلی جابجایی و بردار میدان الکتریکی هم‌جهت هستند. بایستی بدانید که جهت میدان الکتریکی همواره از پتانسیل بیشتر به سمت پتانسیل کمتر است (V> V)؛ بنابراین به‌منظور محاسبه ظرفیت خازن تنها از اندازه اختلاف پتانسیل استفاده می‌کنیم و علامت آن مهم نیست. در نتیجه اختلاف پتانسیل میان این دو صفحه برابر است با:

 

Capacitor

در بالا عنوان کردیم که ظرفیت یک خازن برابر است با  مقدار باری که با اعمال اختلاف ولتاژ ۱ ولت بین دو صفحه جابجا می‌شود. بنابراین ظرفیت خازن در این حالت با استفاده از رابطه زیر قابل توصیف است.

Capacitor

همان‌طور که از رابطه بالا نیز برداشت می‌شود، ظرفیت یک خازن تنها به ویژگی‌های فیزیکی آن وابسته است. برای نمونه در حالتی که دو صفحه تخت وجود داشته باشد، این پارامتر به مساحت سطح دو صفحه (A) و هم‌چنین فاصله آن‌ها (d) مرتبط است. بنابراین هر‌چه فاصله دو صفحه کمتر و یا مساحت آن‌ها بیشتر باشد، خازن ظرفیت بیشتری خواهد داشت.

مثال ۲: خازن استوانه‌ای

مطابق با شکل زیر استوانه‌ای به شعاع a را تصور کنید که توسط استوانه‌ای توخالی به شعاع داخلی b احاطه شده است. طول هر دو استوانه را برابر با L فرض کنید که بسیار بسیار از a-b بزرگ‌تر نیز در نظر گرفته شده (L>>a-b). با توجه به این فرض، می‌توان از اثر لبه در این خازن نیز صرف‌ نظر کرد.

Capacitor

اگر این خازن را به اختلاف پتانسیل ΔV متصل کنیم، باری به اندازه Q+ روی سطح داخلی و Q- روی سطح خارجی قرار می‌گیرد. با این فرض ظرفیت این خازن چقدر است؟

مطابق با مثال قبل در این مسئله نیز بایستی در ابتدا اندازه میدان الکتریکی را بین دو صفحه بدست آوریم. با توجه به تقارن مسئله، سطحی گاوسی را تصور می‌کنیم که طول آن l و بسیار کم‌تر از L است. مطابق با شکل ۲ شعاع سطح گاوسی را نیز برابر با r فرض می‌کنیم که اندازه آن بین a و b قرار گرفته. در نتیجه، میدان الکتریکی بین دو صفحه را می‌توان با استفاده از قانون گاوس و به شکل زیر بدست آورد.

Capacitor

در رابطه بالا λ معرف چگالی بار طولی استوانه است که به صورت λ=Q/L تعریف می‌شود. توجه داشته باشید که میدان الکتریکی E تنها در فاصله a تا b وجود دارد. با توجه به میدان بدست آمده، اختلاف پتانسیلی که بین دو صفحه وجود دارد را می‌توان با استفاده از رابطه زیر بدست آورد.

Capacitor

در این انتگرال‌گیری نیز مشابه مثال قبل،‌ از صفحه مثبت به سمت صفحه منفی حرکت می‌کنیم. با داشتن بار Q و اختلاف پتانسیل V ظرفیت خازن استوانه‌ای را می‌توان با استفاده از رابطه زیر بدست آورد.

Capacitor

با توجه به رابطه بالا مشاهده می‌کنیم که در این حالت نیز، ظرفیت خازن فقط به ویژگی‌های هندسی وابسته است.

مثال ۳: خازن کروی

برای مثال سوم، مطابق شکل زیر دو پوسته کروی را  تصور کنید که بار‌های Q+ و Q- را در خود نگه داشته‌اند. بار‌های الکتریکی در این دو پوسته به صورت کاملا یکنواخت توزیع شده‌اند.

Capacitor
شکل ۲

مطابق شکل بالا سطح گاوسی را به صورت کره‌ای به شعاع r فرض کنید که اندازه آن عددی بین a و b است. میدان الکتریکی نیز تنها در این ناحیه وجود دارد، بنابراین می‌توان قانون گاوس را به صورت زیر بیان کرد:

Capacitor

با توجه به رابطه بالا میدان الکتریکی برابر با مقدار زیر بدست می‌آید.

Capacitor

با بکارگیری میدان بدست آمده اختلاف پتانسیل میان دو پوسته برابر است با:

Capacitor

 

نهایتا ظرفیت C برابر با مقدار زیر بدست می‌آید.

Capacitor

در این حالت نیز ظرفیت C فقط تابعی از هندسه خازن بدست آمده است. بایستی بدانید که اگر طول a را در رابطه بالا به بینهایت میل دهیم ظرفیتی خازنی بدست می‌آید که تنها از یک سطح باردار تشکیل شده. بنابراین ظرفیتی خازنی تک صفحه‌ای برابر است با:

Capacitor

از این رو ظرفیت خازنِ ناشی از یک پوسته‌ کروی برابر است با:

Capacitor

مجموعه‌ای از خازن‌ها در یک مدار

یک خازن می‌تواند توسط یک باتری که در اختلاف پتانسیل V∆ قرار گرفته، شارژ شود. در شکل زیر شماتیک فرآیند شارژ شدن خازن نشان داده شده است.

Capacitor

اتصالات بین باتری و خازن منجر به ذخیره شدن بار Q± روی صفحات می‌شود. صفحه‌ای که به قطب مثبت باتری متصل است، بار Q+ و صفحه متصل به قطب منفی، بار Q- را در خود ذخیره می‌کنند. در حقیقت باتری نقش یک پمپ الکتریکی را ایفا می‌کند که وظیفه‌ آن جابجایی بارهای Q از یک صفحه به صفحه دیگر است.

در حالت کلی خازن‌ها را می‌توان به دو صورت در مدار‌های الکتریکی قرار داد که در ادامه به آن‌ها اشاره می‌کنیم.

خازن‌های موازی

مطابق شکل زیر تصور کنید که خازنی با ظرفیت C1 و بار Q1 به خازنی دیگر با ظرفیت C2 و بار Q2 متصل شده.

Capacitor

صفحات سمت چپ خازن‌ها به پایه مثبت باتری متصل شده‌اند؛ بنابراین هر دوی این صفحات دارای پتانسیل الکتریکی یکسانی هستند. به‌طور مشابه صفحات سمت راست، به پایه منفی باتری متصل شده‌اند، از این رو این دو صفحه نیز از پتانسیل یکسانی برخوردار هستند. در نتیجه می‌توان گفت که اختلاف پتانسیل هر دو خازن با هم برابر است. بنابراین ظرفیت خازن‌ها را می‌توان بصورت زیر بیان کرد:

Capacitor

از طرفی می‌توان این دو خازن را با یک خازن معادل جایگزین کرد. اختلاف پتانسیل دو سر این خازن برابر با ΔV و بار آن را Q می‌نامیم. در این صورت می‌توان گفت:

Capacitor

بنابراین می‌توان با تقسیم بار الکتریکی به اختلاف پتانسیل دو سر خازن، ظرفیت خازن معادل را به صورت زیر بدست آورد.

Capacitor

رابطه بالا مربوط به حالتی است که دو خازن با یکدیگر موازی شده باشند. در حالت عمومی و زمانی که چندین خازن با یکدیگر موازی‌اند، ظرفیت خازن معادل آن‌ها را می‌توان به صورت زیر بدست آورد.

Capacitor

خازن‌های سری (متوالی)

دو خازن با ظرفیت‌های C1 و C2 را به نحوی در نظر بگیرید که در حالت اولیه بدون بار الکتریکی هستند. این دو خازن را بصورت متوالی و مطابق با شکل زیر به یکدیگر متصل می‌کنیم. از این رو پس از متصل کردن آن‌ها به باتری، اختلاف پتانسیل ΔV1 و ΔV۲ به دو سر آن‌ها اعمال می‌شود. صفحه سمت چپ خازن شماره ۱ به قطب مثبت باتری متصل شده و دارای بار Q+ می‌شود. به همین شکل صفحه سمت راست خازن شماره ۲ نیز به قطب منفی باتری وصل شده و بار Q- را در خود نگه خواهد داشت.

Capacitor

در این حالت به نظر شما بار صفحات داخلی این دو خازن چقدر است؟ همان‌طور که در بالا نیز بیان کردیم، هرگاه یک خازن به اختلاف پتانسیلی متصل شود، بار الکتریکی با اندازه‌ای یکسان و علامتی مخالف روی دو صفحه آن پخش خواهد شد. بنابراین در این مسئله نیز بار صفحات داخلی برابر با Q خواهد بود. در نتیجه بارِ صفحه سمت راست خازن شماره ۱ برابر با Q- و با صفحه چپ خازن شماره ۱ برابر با Q+ است. از این رو در یک کلام می‌توان گفت که بار تمامی صفحات برابر با Q است. با این فرضیات و مراجعه به شکل بالا اختلاف پتانسیل دو سر خازن ۱ و ۲ را می‌توان به شکل زیر بیان کرد:

Capacitor

از طرفی بدیهی است که اختلاف پتانسیل کل دو خازن برابر است با:

 

خازن

با جایگذاری بار الکتریکی و ظرفیت خازن‌ها در رابطه بالا داریم:

خازن

با حذف Q از رابطه بالا، مقدار Ceq به شکل زیر بدست می‌آید.

Capacitor

از این رو در حالتی که چندین خازن با یکدیگر سری شده باشند، می‌توان از رابطه زیر جهت محاسبه ظرفیت معادل آن‌ها استفاده کرد.

Capacitor

مثال 4

مطابق شکل زیر سه خازن با ظرفیت‌های C1، C2 و C3 به یکدیگر متصل شده‌اند. ظرفیت معادل این خازن‌ها را بیابید.

Capacitor

همان‌طور که در شکل بالا نیز مشخص شده، خازن‌های C1 و C2 به شکلی موازی به یکدیگر متصل شده‌اند؛ بنابراین خازن معادل آن‌ها برابر است با:

Capacitor

در حقیقت پس از معادل‌سازی انجام شده در بالا، مدار معادل به شکل زیر در می‌آید.

Capacitor

در این مرحله C12 با C3 سری شده، بنابراین می‌توان خازن معادل C12 و C3 را به صورت زیر بدست آورد.

Capacitor-40.JPG

در نتیجه نهایتا می‌توان خازن معادل کل مدار را به شکل زیر بدست آورد.

Capacitor-41.JPG

در شکل زیر نحوه ساده شدن این مدار نشان داده شده است.

Capacitor

همانند این مثال می‌توان خازن‌ها را به شکل‌های مختلفی به یکدیگر متصل کرد.

انرژی ذخیره شده در خازن

همان‌طور که در مقدمه نیز بیان شد، می‌توان از خازن‌ها به‌منظور ذخیره انرژی الکتریکی استفاده کرد. مقدار انرژی ذخیره شده در خازن برابر با کار انجام شده برای شارژ آن است. مطابق با شکل زیر میدان الکتریکی با صرف انرژی، باری به اندازه dq+ را از یک صفحه جدا کرده و به صفحه دیگر منتقل می‌کند.

Capacitor

خازنی را تصور کنید که در حالت اولیه بدون بار است. در هر کدام از این صفحات بیشمار بار مثبت و منفی وجود دارد،‌ اما تعداد آن‌ها با یکدیگر برابر است، بنابراین بار‌های مذکور همدگیر را خنثی می‌کنند. این خنثی کردن به این معنی است که بار خالص مثبت یا منفی روی هیچ‌یک از صفحات وجود ندارد. مطابق با شکل بالا فرض کنید که شخصی بار‌ dq+ را از صفحه پایین به بالا منتقل می‌کند. پس از انجام این کار بار صفحه پایین برابر با dq- و صفحه بالا برابر با dq+ خواهد شد. پس از تکرار این فرآیند، نهایتا بار صفحه پایین برابر با q- و صفحه بالا برابر با q+ خواهد شد.

بنابراین فرض کنید در لحظه‌ای مشخص بار روی صفحه بالا برابر با q+ باشد؛ در نتیجه اختلاف پتانسیل میان دو صفحه برابر با |ΔV|=qC|ΔV|=qC خواهد بود. به‌منظور جابجایی باری به اندازه dq+، بایستی به اندازه dW=|ΔV|dqdW=|ΔV|dq کار انجام داد. اگر در حالت نهایی بار روی صفحه برابر با Q+ باشد، کار انجام شده در طی فرآیند برابر است با:

Capacitor

کار محاسبه شده در بالا، به‌صورت انرژی پتانسیل الکتریکی ذخیره شده در خازن ذخیره خواهد شد. بنابراین انرژی پتانسیل خازنی با بار Q، ظرفیت C و اختلاف پتانسیل ΔV برابر است با:

Capacitor
رابطه ۱

چگالی انرژیِ میدان الکتریکی

انرژی ذخیره شده در یک خازن را می‌توان به‌صورت انرژی ذخیره شده در میدانِ خازن تصور کرد. در حالتی که با خازنی با صفحات موازی مواجه هستیم، ظرفیت و اختلاف پتانسیل دو سر آن برابر است با:

Capacitor

با جایگذاری این مقادیر در رابطه ۱، انرژی ذخیره شده بر حسب میدان الکتریکی موجود در خازن، به شکل زیر بدست خواهد آمد.

Capacitor

اگر توجه داشته باشید، Ad حجم بین دو صفحه را نشان می‌دهد. از این رو می‌توان با تقسیم رابطه بالا به حجم میان دو صفحه خازن، به مقداری تحت عنوان چگالی انرژی الکتریکی دست یافت.

Capacitor

همان‌طور که از رابطه بالا معلوم می‌شود، uیا همان چگالی انرژی، با توان دوم میدان الکتریکی رابطه‌ای مستقیم دارد. بنابراین مثلا با دو برابر کردن میدان الکتریکی چگالی انرژی الکتریکی ۴ برابر خواهد شد.

 

مثال 5: چگالی انرژی الکتریکی هوای خشک

هوای خشک توانایی عایق بودن خود را در میدان Eb=3×10۶ V/m از دست می‌دهد. چگالی انرژی الکتریکی در این میدان چقدر است؟

با جایگذاری مقادیر ضریب گذردهی مربوط به هوای خشک و میدان ارائه شده در صورت مسئله، در رابطه مربوط به چگالی میدان الکتریکی، داریم:

Capacitor

مثال 6: انرژی ذخیره شده در پوسته کروی

پوسته‌ای کروی با بار Q و شعاع a را مطابق با شکل زیر در نظر بگیرید. انرژی ذخیره شده در پوسته مفروض چقدر است؟

Capacitor

 میدان ناشی از پوسته کروی را برابر با مقدار زیر بدست آوردیم.

Capacitor

از این رو چگالی انرژی الکتریکی ناشی از این میدان برابر است با:

Capacitor

با بدست آمدن چگالی میدان، می‌توان با انتگرال‌گیری از آن، به کل انرژی ذخیره شده در میدان مفروض دست یافت. بدین منظور در ابتدا پوسته‌ای دیفرانسیلی را به ضخامت dr فرض می‌کنیم. حجم این پوسته برابر با dV=4πr2dr خواهد بود. نهایتا با انتگرال‌گیری رابطه بالا روی این جزء حجم،‌ داریم:

Capacitor

در رابطه بالا V=Q4πϵ0aV=Q4πϵ0a برابر با پتانسیل الکتریکی در سطح پوسته است. ما می‌توانیم ثابت کنیم که انرژی ذخیره شده در میدان برابر با کار انجام شده جهت باردار کردن پوسته به اندازه Q است. برای محاسبه کار مذکور فرض کنید که پوسته در لحظه مشخصی بار q را در بر دارد. پتانسیل ناشی از این بار برابر با V=q4πϵ0aV=q4πϵ0a بدست می‌آید. از این رو کار جزئی انجام شده جهت اضافه کردن بار dq به سیستم، برابر با dW=Vdq است؛ بنابراین می‌توان از dW در بازه ۰ تا Q انتگرال‌گیری کرد و کار لازم جهت قرار دادن بار Q روی پوسته را به شکل زیر بدست آورد.

Capacitor

در آینده به مفهومی تحت عنوان «دی‌الکتریک» (Dielectric) خواهیم پرداخت که با استفاده از آن می‌توان ظرفیت خازن‌ها را افزایش داد.

 

heartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheartheart

  • سیدعلی مومنی